Combinatorics of Integer Partitions in Arithmetic Progression
نویسندگان
چکیده
The partitions of a positive integer n in which the parts are in arithmetic progression possess interesting combinatorial properties that distinguish them from other classes of partitions. We exhibit the properties by analyzing partitions with respect to a fixed length of the arithmetic progressions. We also address an open question concerning the number of integers k for which there is a k-partition of n with parts in arithmetic progression.
منابع مشابه
On the enumeration of partitions with summands in arithmetic progression
Enumerating formulae are constructed which count the number of partitions of a positive integer into positive summands in arithmetic progression with common difference D. These enumerating formulae (denoted pD(n)) which are given in terms of elementary divisor functions together with auxiliary arithmetic functions (to be defined) are then used to establish a known characterisation for an intege...
متن کاملStirling number of the fourth kind and lucky partitions of a finite set
The concept of Lucky k-polynomials and in particular Lucky χ-polynomials was recently introduced. This paper introduces Stirling number of the fourth kind and Lucky partitions of a finite set in order to determine either the Lucky k- or Lucky χ-polynomial of a graph. The integer partitions influence Stirling partitions of the second kind.
متن کاملPartitions into three triangular numbers
A celebrated result of Gauss states that every positive integer can be represented as the sum of three triangular numbers. In this article we study p3∆(n), the number of partitions of the integer n into three triangular numbers, as well as p3∆(n), the number of partitions of n into three distinct triangular numbers. Unlike t(n), which counts the number of representations of n into three triangu...
متن کاملOn the Number of Parts of Integer Partitions Lying in given Residue Classes
Improving upon previous work [3] on the subject, we use Wright’s Circle Method to derive an asymptotic formula for the number of parts in all partitions of an integer n that are in any given arithmetic progression.
متن کاملk-Efficient partitions of graphs
A set $S = {u_1,u_2, ldots, u_t}$ of vertices of $G$ is an efficientdominating set if every vertex of $G$ is dominated exactly once by thevertices of $S$. Letting $U_i$ denote the set of vertices dominated by $u_i$%, we note that ${U_1, U_2, ldots U_t}$ is a partition of the vertex setof $G$ and that each $U_i$ contains the vertex $u_i$ and all the vertices atdistance~1 from it in $G$. In this ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010